

Chemical and Petrochemical Applications of Microwave Plasma – Atomic Emission Spectroscopy (MP-AES)

Doug Shrader, Patrick Simmons & Phil Lowenstern

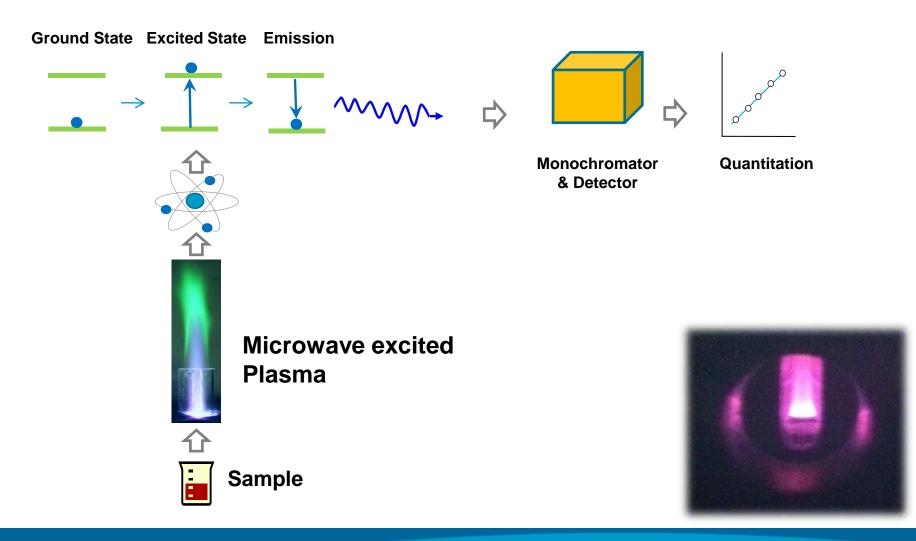
2012 Gulf Coast Conference Galveston, TX October 17, 2012

Common Challenges Facing Laboratories Doing Elemental Analysis Today

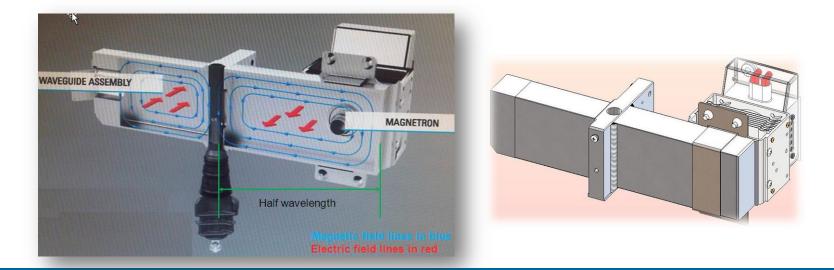
- Increased need for <u>multi-element determination</u> over a wide dynamic range
- Desire to <u>reduce the overall cost of analysis</u> due to rising costs (instrument supplies and consumables – power, labor, etc)
- <u>Difficulty in sourcing some gases</u> especially in remote areas and emerging geographies
- <u>Availability of suitably trained personnel</u> to develop methods, perform sample measurement and interpret results
- Some laboratories under pressure to <u>improve safety</u> by removing flammable gases

NEW Agilent 4100 Microwave Plasma-Atomic Emission Spectrometer (MP-AES)

New technique for elemental determination using atomic emission


- Microwave excited plasma source
- Nitrogen based plasma runs on air (using a N₂ generator)
- Improved performance compared with flame AA
 - Higher sample throughput with fast sequential measurement
 - More than 2x faster than conventional flame AA
 - Superior detection limits and improved dynamic range
- Easy to use
 - New generation software featuring automated optimization and software applets that load a preset method
 - One piece torch with easy torch removal and replacement no alignment
- Reduced operating costs
 - Runs on air eliminates need for Acetylene, Nitrous Oxide, Argon, etc.
 - · Eliminates need for source / hollow cathode lamps
 - Simple installation no chiller, 10 A supply
- o Improved Safety
 - Eliminates need for flammable gases and cylinder handling
 - Safe, reliable unattended multi-element overnight operation

Microwave Plasma Emission Overview

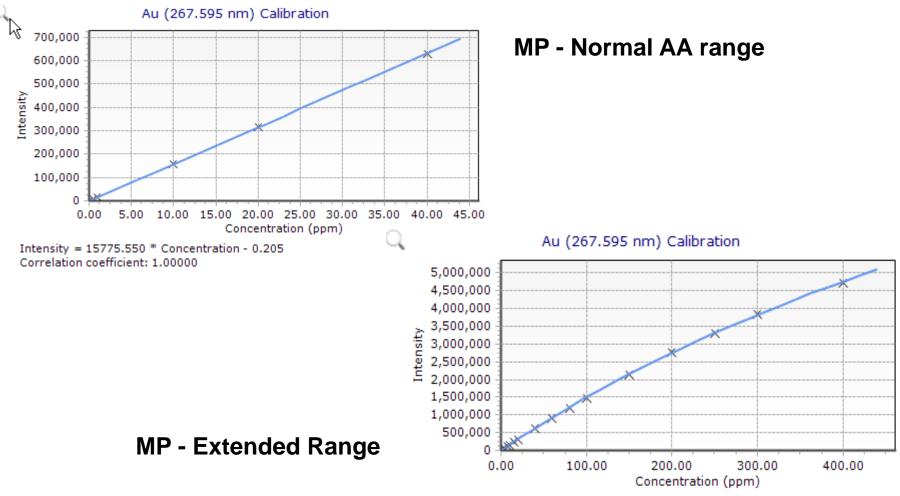


How Does MP-AES Work?

Agilent's patented microwave waveguide technology

- Using nitrogen as the plasma gas (a diatomic gas) gives a robust plasma with a conventional torch. Nitrogen can be supplied either via bottled gas or nitrogen generator
- Magnetic excitation gives a toroidal plasma and an effective central zone for ٠ sample injection
- The microwave magnetically excited nitrogen plasma ٠
 - Provides a robust, high temperature source in conventional torches (approx. 5000 K)
 - A cooler central channel suitable for sample atomization
 - Creates high intensity atomization emission lines

Performance Comparison – Typical Detection Limits


DL's in ppb, clean water samples

Element	Flame AA	MP-AES	Element	Flame AA	MP-AES
K	0.8	0.65	As*	60	45
Ca	0.4	0.05	Cd	1.5	1.4
Mg	0.3	0.12	Cr	5	0.5
Na	0.3	0.12	Mn	1.0	0.25
Au	5	1.8	Pb	14	4.4
Pt	76	4.5	Sb	37	12
Pd	15	3.8	Se*	500	70
Ag	1.7	0.5	V	20	0.2
Rh	4	0.5	* 30 second in	tegration time used fo	or As and Se

3 sigma DLs using a 10 second integration time

Au – Extended Calibration Range

Intensity = (16408.841 * Concentration + 0.057) / (1 + 0.001 * Concentration) Correlation coefficient: 0.99998

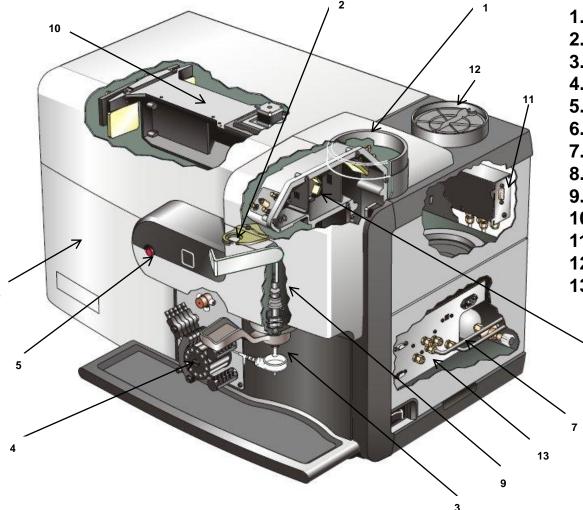
The Measure of Confidence

Simple Torch Installation – No Alignment

Torch installation in three easy steps

New Generation MP Expert Software

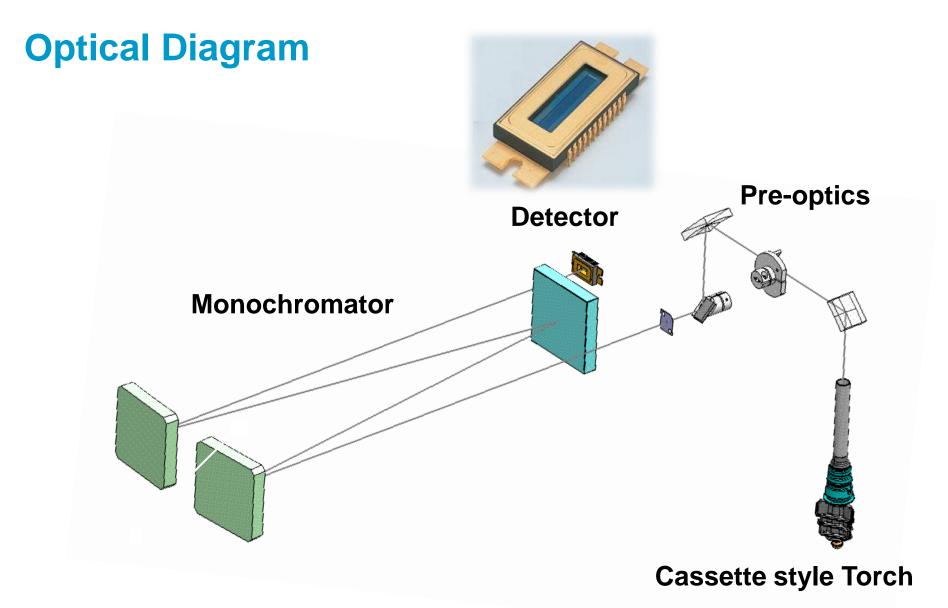
- Windows 7, worksheet based software
- Fresh, clean look
- Provides capability for applet style operation using preset methods, or access to full capabilities
- Innovative and simple to use background correction
- Automated optimization tools


New Generation MP Expert Software

Retains familiar "worksheet" based approach

Portune de la construir de	MP Expert - 3 MSIS DL O	ine Neb Hg ect	: 23022011.	npws			1000			and the same				-								0 ×
	🗁 Eile 🔹																					
	Save Open Plasma	Pump Pause	Stop Sw																			
	• 🖆 Close 💽 •	- I	5	-	*																	
Without Summy Image: Status Statu	Start	S MSIS C	DLOn ×																			•
Berend Creditors Standard Stan		View :	M 🗷 🛙	👔 🔤 Toggle Result	s • .00 .	Delete Resu	ilts															
tevents Costone Spence Autompter Autyrk Terepter meter Sb 217.550 rms Sb C 217.550 rms Costone Strates and Strates an	Worksheet Summary										۵											
Benefit Image: Bold State			Back		Sb		Pb	Cd	Sb	Sb	Ha	Q			Sb (217.582 nm), Standard	1, Ra	ck S1 Tube	2		
Continues Continues	Elements		Tube	Sample Label																		
Sundadi Sequence Antoampler Antyds Sub Si Sun Si S			V S1:1	Blank	0.00000000 x	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000		160,000									
Sevender Segence Andred Segence Andred Segence Andred Segence Andred Segence Andred Segence Andred Segence Andred Segence Segence Andred Segence S	Conditions	Image: Second	S1:2	Standard 1	5.0000000 x	5.00000000 x	5.0000000 x	5.00000000 x	5.0000000 x	5.0000000 x	5.0000000 x		140,000									
Square Automatic Aut				Sample 1 Blank									120,000						-			
Sequence Andrew Andrew <td>Standards</td> <td></td> <td></td> <td>Sample 2 Blank</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>100.000</td> <td>0.</td> <td></td> <td>1</td> <td></td> <td>\setminus</td> <td></td> <td></td> <td></td> <td></td>	Standards			Sample 2 Blank									100.000	0.		1		$ \setminus$				
Sequence Autosemple Autosemple<				Sample 3 Blank								4		5	Dec	tra		$ \rangle$				
Andragele Andragele	Sequence			Sample 4 Blank								ensi	80,000									
Autsemplet Analysis Image:				Sample 5 Blank								te	60,000									
Analysis Analysis Will 11 30 Saveb 50 Bark Will 11 30 Saveb 50 Bark	Autocamplar												40,000									
Analyste With 15 Sample Bask With 15 Sample Bask	Autosampier			The second second second									20.000									
Vieweingting in the service of th				A SCOTTER SPACE PLANT	-													_				
Results matrix Sb Sb St Sb Sb Sb Sb Sb Sb Sb Sb Sb Sb Sb Sb Sb	Analysis			Carlie Lo President Strengt and									0			The server stress served in	6 W 6 1					
Sb 217.582 nm S00000000 14575 0000000 14578 0000700 14578 000000 14578 0000700 1000 000 000 000 000 000 000 00			1:10	Sample 10 Blank									-20,000									
Sb 217.582 nm souccess of the souccess of the source of						IXC	550		nati									elengui	(1117)			
Average 500000000x 145075.09323375x Warning Flags SD N/A 558 A34345375 *homplete model SD N/A 32 *homplete model V 1 50000000x 14758.8081990 V 2 50000000x 149756.07222504 V 3 50000000x 149756.07222504 V 3 50000000x 149756.07202504 V 3 50000000x 149756.07202504 V 3 50000000x 149756.07202504 V 3 50000000x 149756.07202504 V 5 50000000x 149756.0720512 V 5 50000000x 149756.0720512 V 5 50000000x 149756.0720512 V 7 50000000x 149756.0720512 V 5 50000000x 149756.0720512 V 5 50000000x 137623.07322 V 9 50000000x 137623.07332 V 9 50000000x 137623.07332 V 9 <		4									×	Q				Sb (21)	7.582 nm) (Calibra	tion			
New Subcould State			1																			×
Sb 217.582 nm 5.0000000 x ppm RSD (%): N/A srater 1 (5L2) Worksheet running Measuring Sb 217.582, replicate 10 of 10 C Worksheet running Measuring Sb 217.582, replicate 10 of 10 C Sb Sb 217.582 nm Source 10 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						Warning I	Flags														/	
Image: Sb 2 5.0000000x 147538 8081990 Image: Sb 3 5.0000000x 149789 1037702 Image: Sb 3 5.0000000x 149789 1037702 Image: Sb 4 5.0000000x 149789 1037702 Image: Sb 4 5.0000000x 149789 1037702 Image: Sb 4 5.0000000x 149789 1037702 Image: Sb 5 5.0000000x 149789 1037302 Image: Sb 5 5.0000000x 149789 1037302 Image: Sb 7 5.0000000x 137833 162369 Image: Sb 9						x Incomplete r	model															
Image: Signal of Signal o				1																		
Image: Signal state of the			The second second second																/			
Sb 217.582 nm S00000000 x 149783.0037702 Ø 5 500000000 x 149783.0037702 Ø 6 50000000 x 149783.0037702 Ø 6 50000000 x 149783.0037702 Ø 7 5 500000000 x 149783.0037702 Ø 8 500000000 x 149783.0037702 Ø 9 500000000 x 137583.1623369 REplicate data Norksheet running Measuring Sb 217.582, replicate 10 of 10 %		1.1										nsit	80,000					/				
Sb 217.582 nm 5.0000000 x ppm Sb (%): N/A St (%): N/A <												Inte	70,000				/					
SD SD W 4 50000000 H 197630037/02 217.582 nm S 5 5.0000000 x 149478.1343317 G	CI.	- C-																				
217.002 mm S.00000000 x ppm RSD (%): N/A Standard 1 (S12) Worksheet running Measuring Sb 217.582, replicate 10 of 10 @	Sb												40,000			/		-				
217.002 mm V 7 5.00000000 x ppm S.00000000 x ppm V 8 5.00000000 x 137623.2013332 RSD (%): N/A V 9 5.00000000 x 137623.2013332 V 9 5.00000000 x 137583.1623369 Replicate data Vorksheet running Measuring Sb 217.582, replicate 10 of 10 @ E Busy	217 592 pm																		Jall	prat	ION	
S.00000000 x ppm RSD (%): N/A Standard 1 (S12) Image: standard 1 (S12) Ima														/								
RSD (%): N/A Standard 1 (S1.2) Image: space of the	5.0000000 x ppm														1.00		2.00	-	3.00		0	5.00
Stendard 1 (512) I 10 5.0000000 x 136929.3558030 Replicate Oata Intensity = 29015 * Concentration - 0.0 Correlation coefficient: 1.00000 Worksheet running Measuring Sb 217.582, replicate 10 of 10 @ Busy	RSD (%): N/A								I	-1-			0.00		1.00			ntration		4.1	0	5.00
Worksheet running Measuring Sb 217.582, replicate 10 of 10 S EN Let an Let						R	edi	icat	e da	ata						.0						
EN . 10- 07 40 5-23 PM													orrelation coe	micient: 1.	00000							
EN . 📭 👘 👔 🔽	Worksheet running Mea	asuring Sb 21	.7.582, ren	licate 10 of 10 🙆	R																	Busy
		S									-									EN		
	🥥 🗐 🎸										and the second					1			The state of the			

Schematic Diagram



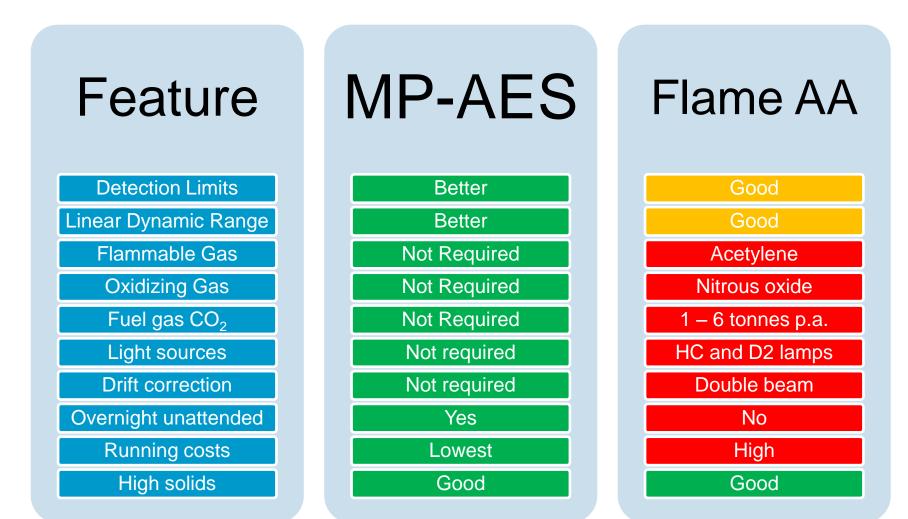
- 1. Instrument exhaust
- 2. Pre-optics window
- 3. Torch loader
- 4. Peristaltic pump
- 5. Plasma enable button
- 6. High voltage power supply
- 7. Electronics (control PWB)
- 8. Pre-optics

8

- 9. Plasma (Magnetron)
- **10. Monochromator with CCD detector**
- 11. External gas control module
- 12. Cooling air inlet
- 13. Inlet gas connections

Agilent Technologies

Accessory Options for the 4100 MP-AES


- Automate and simplify analysis with the SPS3 autosampler (required for unattended overnight operation)
- For organic applications, use the EGCM to bleed air into the plasma minimizing C build-up and reducing background
 - also requires the OneNeb inert nebulizer (included with the Organics kit)
- For low ppb level detection of As, Se or Hg, use the Multimode Sample Introduction System (MSIS)
 - also requires the 5 channel peristaltic pump option

Technique Comparison: MP-AES and Flame AA

Newmont's Carlin Lab AA Consumable Costs vs MP-AES*

		Annual	# AA	Aı	Mean nual Cost	Agilent
Consumable 💌		Cost 🔻	Units 🔽		per AA 🔻	MP-AES 🔽
Actylene	\$	63,615.36	9	\$	7,068.37	\$0.00
Au HCL	\$	37,440.00	9	\$	4,160.00	\$0.00
Ag HCL	\$	4,240.00	9	\$	471.11	\$0.00
NI HCL	\$	1,672.00	9	\$	185.78	\$0.00
Cu/Ni HCL	\$	3,180.00	9	\$	353.33	\$0.00
Cu HCL	\$	4,180.00	9	\$	464.44	\$0.00
Fe HCL	\$	1,712.00	9	\$	190.22	\$0.00
As HCL	\$	2,464.00	9	\$	273.78	\$0.00
D2 Lamps	\$	8,436.68	9	\$	937.41	\$0.00
TOTAL	Ş	126,940.04	9	\$	14,104.45	\$0.00

* Acknowledgement – John Borland, Newmont Mining Corporation

Applications MP-AES Can Do – Examples

GEOCHEMICAL

- Geochem samples in aqua regia digests
- Trace elements in geological samples
- Trace level gold in cyanide leach
- Analysis of high purity gold
- Platinum group elements in ore grade material
- Various elements in plating solutions

Additives in lubricating oils Wear metal contaminants in used oils

CHEMICAL & PETROCHEMICAL

Analysis of coolant

Analysis of petroleum and diesel fuel

Major elements in polymers

FOOD & AGRICULTURE

Major elements in foods, beverages and agricultural samples Cations in soils

Nutrients in soils

Metals in soil extracts

Metals in agricultural soil samples

ENVIRONMENTAL

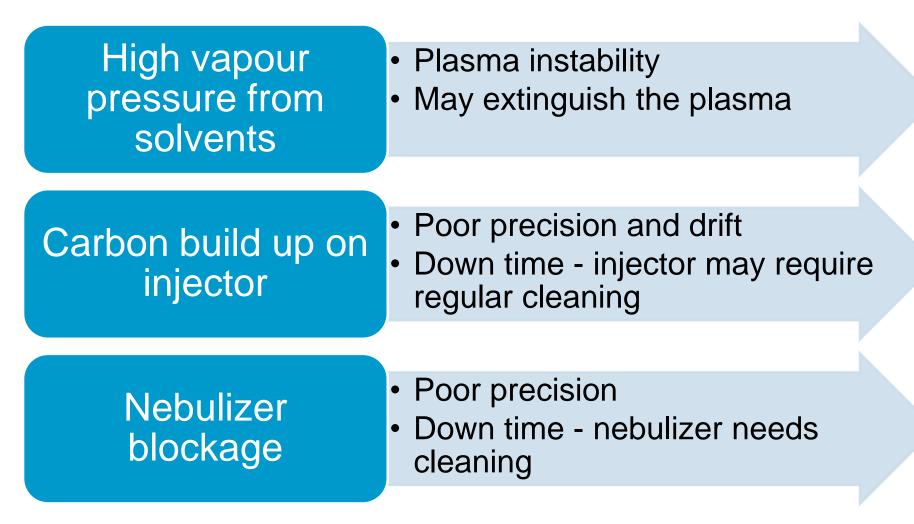
Hg, Pb, Cd and Cr in electronics and plastics (for WEEE/RoHs compliance)

Heavy metals in soils

As, Sb and Se in sediments and waste

Analysis of waste waters, sediments and soils

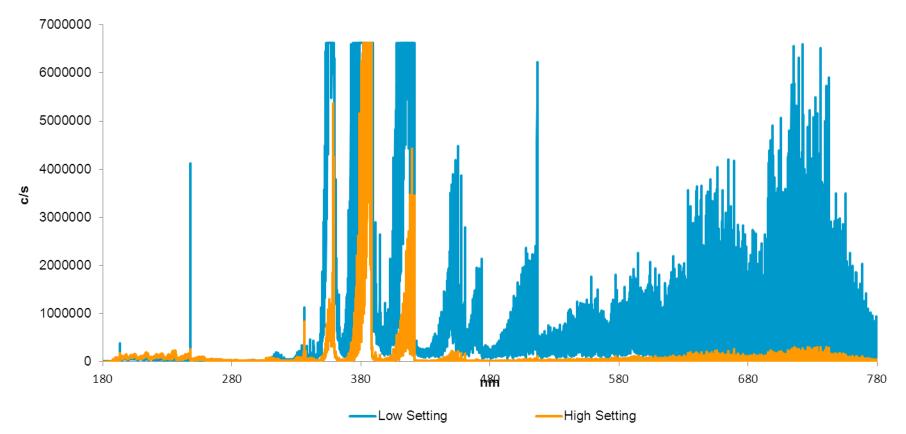
Chemical and Petrochemical Applications


Today we'll be looking at -

- 1. Determination of Cr, Ni, Pb and V in ethanol fuel
- 2. Determination of Ca, Mg, Na, K and Si in diesel and biodiesel
- 3. Direct determination of impurities in gasoline
- 4. Determination of wear metals and additives in oil

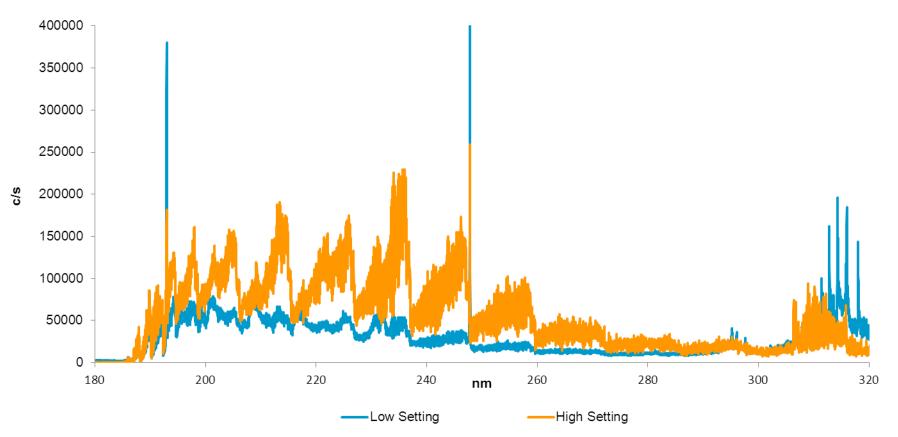
Chemical and Petrochemical Applications – The Challenge

Page 18


Organic Samples and Solvents - External Gas Control Module (EGCM)

- 1. Prevents carbon build up on the injector when running organics
- 2. Reduces the background emissions from the plasma
- 3. A controlled flow of air is bled into the Auxiliary gas flow through the torch
- 4. Automatic PC control of air flow

Solvent Background - Minimized with EGCM


Shellsol T Background

Solvent Background - Minimized with EGCM

For Challenging Applications – OneNeb Nebulizer

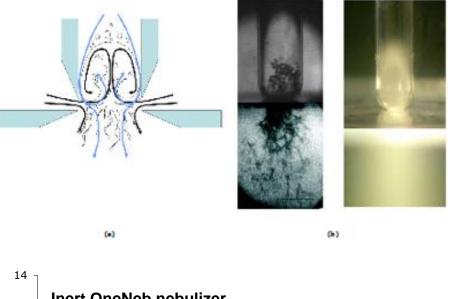
- Robust PFA and PEEK construction
 - Inert resistant to strong acids such as HF
 - Resistant to breakage
 - Molded plastic design provides improved nebulizer to nebulizer reproducibility
- Constant diameter narrow bore tubing through to nebulizer tip
 - Ideal for high solids/particulates
 - Improved tolerance to high TDS samples
- Narrow aerosol size distribution provides improved precision
- Handles a wide flow range from 0.1 to 2 mL/min.
 - No sensitivity loss at low flow rates

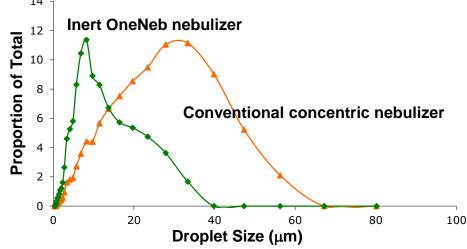
Principle of Operation – Inert OneNeb Nebulizer

Tip geometry dimensioned to allow carrier gas to mix with the sample

Turbulent mixing of liquid and gas occurs

 Produces aerosol with a narrow size distribution range


Droplets mixed into gas flow


No area of low pressure

Unique Flow Blurring action increases nebulization efficiency

- Greater efficiency than conventional concentric nebulizer
- Improved sensitivity

The Mealsure of Confidence

Determination of Cr, Ni, Pb and V in Ethanol Fuel

Introduction – Cr, Ni, Pb and V in Ethanol Fuel

Metals in ethanol fuel may reduce engine performance and deteriorate fuel quality. Ethanol can also contain toxic elements derived from the soil where the sugar cane used to produce the ethanol was grown, or introduced during production, storage or transport. After fuel combustion, these elements can significantly increase air pollution.

A simple 'dilute-and-shoot' procedure for determination of Cr, Ni, Pb and V in ethanol fuel by microwave plasma atomic emission spectrometry (MP-AES) was proposed. Samples were easily prepared and neither special nor expensive gases were needed for performing analyses. All limits of detection, from 0.3 to 40 μ g/L, were compatible with requirements pertaining to fuel impact on the environment and engine performance.

George L. Donati*, Renata S. Amais*, Daniela Schiavo† and Joaquim A. Nóbrega* * Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil † Agilent Technologies, São Paulo, SP, Brazil

Measurement Challenge

Challenge

Simply and effectively determining Cr, Ni, Pb and V in ethanol fuel.

Solution

The Agilent 4100 MP-AES spectrometer allows direct analysis of ethanol fuel samples. The external gas control module (EGCM) prevents carbon deposition on the torch and pre-optics, reducing background signal and enhancing accuracy.

Experimental Instrumentation

- Instrument: Agilent 4100 MP-AES spectrometer
- Sample introduction system: Solvent-resistant tubing, double-pass cyclonic spray chamber, and inert OneNeb nebulizer.
- Accessory: External gas control module (EGCM) to inject air into the nitrogen plasma.

4100 MP-AES

Experimental

Instrument operating conditions

Instrument parameter	Operating condition
Nebulizer	Inert OneNeb
Spray chamber	Cyclonic double-pass
Read time (s)	5
Number of replicates	3
Stabilization time (s)	15
Background correction	Auto

Experimental

Reagents and standard solutions

- Nitric acid (Merck, Darmstadt, Germany) previously purified by a subboiling distillation system (Milestone, Sorisole, Italy) was used to prepare all solutions.
- Stock single element solutions containing 1000 mg/L of Cr, Ni, Pb or V (Tec-Lab, Hexis, São Paulo, SP, Brazil) were used to prepare standard reference solutions and to carry out spike experiments.
- Analytical grade ethanol (J. T. Baker, Hexis, São Paulo, SP, Brazil) was used to matrix match the standard reference solutions used to build the analytical calibration curves.

Experimental

Sample and sample preparation

- Ethanol fuel samples (hydrated ethanol) were obtained in local gas stations in São Carlos, SP, Brazil.
- Samples were diluted 10-fold in 1% HNO_3 (v/v).
- Standard reference solutions used in the external calibration method were prepared by diluting adequate volumes of inorganic standard solutions of Cr, Ni, Pb or V in 1% HNO₃ (v/v).
- Ethanol was also added to each standard reference solution to a final concentration of 10% ethanol (v/v).

Results

Figures of merit for Cr, Ni, Pb and V determinations in ethanol fuel by MP-AES

Element	LOD* (µg/L)	LOQ* (µg/L)	LOD in the sample ⁺ (µg/kg)
Cr	0.7	2.2	9
Ni	16	52	200
Pb	40	130	490
V	0.3	0.9	4

* Instrumental limits of detection and quantification.

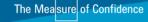
+ Limit of detection considering sample dilution (1:9 v/v ethanol fuel in HNO₃ 1% v/v).

Results

Spike experiments for Cr, Ni, Pb and V determination in ethanol fuel samples

Element	Added (µg/L)	Found (µg/L)	Recovery (%)
Cr	20	21.2 ± 1.2	106
	100	95.1 ± 1.2	95
	500	460 ± 30	92
Ni	100	95.3 ± 0.8	95
Pb	400	430 ± 10	108
	1000	990 ± 10	99
V	20	19.8 ± 1.6	99
	100	98.4 ± 1.4	98
	500	460 ± 20	92


Conclusions


- Direct analysis of ethanol fuel samples using the Agilent 4100 MP-AES is a simple and effective method that can easily be implemented in routine analysis.
- Four samples were analyzed and none were contaminated. No sample preparation is required and a simple "dilute-and-shoot" procedure, with solutions in 1% HNO₃ (v/v), is adequate for accurate and precise determinations of Cr, Ni, Pb and V in ethanol.
- The EGCM prevented carbon deposition on the torch and pre-optical components, contributing to reduced background signals and improved accuracy.

Determination of Ca, Mg, Na, K and Si in Diesel and Biodiesel

Direct Determination of Impurities in Gasoline

Limits on Target Elements in Diesel Fuel - EN14538

Property	ASTM Method	Limits	Units
Calcium & Magnesium, combined	EN 14538	5 max	ppm (ug/g)
Flash Point (closed cup)	D 93	93 min.	Degrees C
Alcohol Control (One of the following m	ust be met)		
1. Methanol Content	EN14110	0.2 Max	% volume
2. Flash Point	D93	130 Min	Degrees C
Water & Sediment	D 2709	0.05 max.	% vol.
Kinematic Viscosity, 40 C	D 445	1.9 - 6.0	mm ² /sec.
Sulfated Ash	D 874	0.02 max.	% mass
Sulfur S 15 Grade S 500 Grade	D 5453 D 5453	0.0015 max. (15) 0.05 max. (500)	% mass (ppm) % mass (ppm)
Copper Strip Corrosion	D 130	No. 3 max.	
Cetane	D 613	47 min.	
Cloud Point	D 2500	Report	Degrees C
Carbon Residue 100% sample	D 4530*	0.05 max.	% mass
Acid Number	D 664	0.50 max.	mg KOH/g
Free Glycerin	D 6584	0.020 max.	% mass
Total Glycerin	D 6584	0.240 max.	% mass
Phosphorus Content	D 4951	0.001 max.	% mass
Distillation, 190 AET	D 1160	360 max.	Degrees C
Sodium/Potassium, combined	EN 14538	5 max	ppm
Oxidation Stability	EN 14112	3 min	nours

Free of undissolved water, sediment, & suspended matter Workmanship BOLD = BQ-9000 Critical Specification Testing Once Production Process Under Control

The carbon residue shall be run on the 100% sample.

Sample Preparation – Method EN14538

A commercial diesel sample was analyzed

• 1:10 dilution with Shellsol

Standards made from Conostan S21+K

• 0.5 ppm, 1 ppm, 5 ppm, 10 ppm

All samples and standards matrix matched with blank oil

Instrument Parameters

Parameter	Setting
Nebulizer	Inert OneNeb
Spray chamber	Double-pass glass cyclonic
Sample tubing	Orange/green solvent resistant
Waste tubing	Blue/blue solvent resistant
Read Time	3 s
Replicates	3
Stabilization time	15 s
Fast Pump (80 rpm)	On
Background correction	Auto
Pump speed	5 rpm

Page 37

Method Detection Limits

3σ , 3s read time, 10 blanks

Element	Wavelength (nm)	MDL (ppb)
Mg	285.213	2.7
Са	422.673	8.2
Na	588.995	18.7
К	766.491	2.7

Spike Recoveries - Diesel Fuel

Diesel fuel sample spiked with 0.55 ppm S21+K

Element	Sample (ppm)	Spiked Sample (ppm)	Recovery (%)
Mg 285.213 nm	< MDL	0.53	97
Ca 422.673 nm	< MDL	0.51	93
Na 588.995 nm	< MDL	0.51	93
K 766.491 nm	< MDL	0.51	93

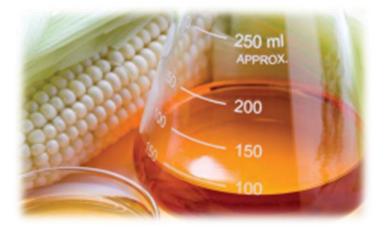
Introduction - Si in Diesel and Biodiesel

The presence of metals and metalloids such as silicon compounds in petrochemical products can influence the performance of engines, and contribute to shortening the lifetime of the machinery. In addition, some elements act as catalyst poison, contributing to increases in the amount of toxic gases and particulate matter emitted by vehicles. Recent legislation in Brazil has established the maximum concentration of Si plus Al in diesel as 80 mg/kg. This study describes the determination of Si in diesel and biodiesel samples using the Agilent 4100 MP-AES.

Different sample preparation procedures were evaluated and the instrument robustness was demonstrated by analyzing samples diluted in 90% ethanol. Adequate recoveries were achieved even by applying a simple non-matrix-matched external calibration method with aqueous standard solutions.

Renata S. Amais*, George L. Donati*, Daniela Schiavo† and Joaquim A. Nóbrega* * Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil † Agilent Technologies, São Paulo, SP, Brazil

Measurement Challenge


Challenge

To safely and cost effectively perform biodiesel analysis at sufficient sensitivity to meet increasingly stringent International Standards

Solution

The use of the Agilent 4100 MP-AES simplifies biodiesel analysis. The microwave plasma is extremely tolerant to solvent loading, without the need to change conditions.

Automated gas controls, in conjunction with the EGCM, take the uncertainty out the setup and let you concentrate on the analysis.

Experimental Instrumentation

- Instrument: 4100 MP-AES spectrometer
- Accessory: External gas control module (EGCM) for injecting air into the plasma and preventing carbon deposition on the torch and optical components. Also contributes to plasma stability and background emission reduction in organic sample analyses.
- A closed-vessel microwave oven equipped with 45 mL PFA vessels for the digestion of diesel and biodiesel samples.

4100 MP-AES

Experimental Operating conditions

Parameter	Value
Nebulizer	Inert OneNeb
Spray chamber	Cyclonic double-pass
Read time	10 s
Number of replicates	3
Stabilization time	15 s
Background correction	Auto

Experimental

Reagents and standard solutions

- Nitric acid previously purified by a sub-boiling distillation system, and hydrogen peroxide (30%) were used to digest the samples.
- Polyoxylene(10)octylphenyl ether, n-propanol and light mineral oil, without additional purification, were used for the micro-emulsion preparation.
- A 1000 mg/L Si stock solution was diluted to prepare aqueous and microemulsion standard reference solutions and to carry out spiking studies in digested samples and micro-emulsions.
- Analytical grade ethanol was used for direct sample dilution.
- A Si 1000 mg/L stock solution in organic medium was used in spike studies of ethanol-diluted diesel and biodiesel samples.
- External calibration with aqueous standard reference solutions in 1% HNO₃ (v/v) was performed for Si determination in both the digested samples and those diluted in 90% ethanol (v/v).

Experimental Sample preparation

- Biodiesel samples were provided by the Center of Characterization and Development of Materials (CCDM, Federal University of São Carlos, São Carlos, SP, Brazil).
- Diesel fuel samples containing 5% v/v of biodiesel (B5), in accordance to the Brazilian legislation, were obtained from local gas stations of São Carlos, SP, Brazil.
- Three sample preparation procedures were evaluated: microwave-assisted digestion, micro-emulsion preparation in n-propanol, and dilution in ethanol.
 - $\circ\,$ Sample digestions were performed by using 50% HNO_3 (v/v 7 mol/L) and 3.0 mL of H_2O_2 (30%).
 - Micro-emulsions were prepared by adding 0.5 mL of Triton X-100 and 0.5 mL of a 20% HNO₃ (v/v) aqueous solution to 1.0 mL of diesel or biodiesel. The volume was then made up to 10 mL with n-propanol and the mixture was homogenized for 2 min with a vortex mixer. During preparation of the micro-emulsion standard reference solutions, the sample was replaced by 0.2 mL of mineral oil, which simulates the sample matrix viscosity.
 - The direct dilution of samples in ethanol was carried out by adding 9 mL of ethanol to 1 mL of sample.

Results Figures of merit

	HNO ₃ ²	% v/v		Micro-	emulsion	
	LOD (µg/L)	LDR* (Decades)	RSD† (%)	LOD (µg/L)	LDR* (Decades)	RSD† (%)
Si (251.611 nm)	20	2.3	1.6	5	2.6	1.6
Si (288.158 nm)	240	0.9	1.3	5	2.5	0.4

* Linear dynamic range starting at the limit of detection.

† Repeatability presented as the relative standard deviation for a 2 mg/L Si solution (n = 10).

Results

Spike experiments after sample digestion, dilution in 90% v/v ethanol or micro-emulsion preparation (mg/L)

Sample	Si emission line (nm)	Digestion*			Ethanol [†]			Micro- emulsion*		
		Added	Recov	/ered	Added	Reco	vered	Added	Reco	vered
Biodiesel	251.611	3.0	3.05	0.07	0.5	0.45	0.03	1.0	0.89	0.05
					1.0	0.99	0.09			
	288.158	3.0	3.05	0.01	0.5	0.40	0.04	1.0	0.89	0.06
					1.0	1.02	0.17			
Diesel	251.611	3.0	3.09	0.10	0.5	0.47	0.01	1.0	0.96	0.03
					1.0	0.91	0.01			
	288.158	3.0	3.07	0.15	0.5	0.46	0.01	1.0	0.96	0.04
					1.0	0.95	0.01			

* Spike solution in aqueous medium.

† Spike solution in organic medium.

Conclusions

- In this work, accurate Si determinations were successfully carried out simply by diluting the samples in ethanol, and using external calibration with aqueous solutions. Considering its simplicity and sample throughput, this method is recommended for the determination of Si in diesel and biodiesel samples.
- The sample preparation procedures evaluated are environmentally friendly, because less toxic solvents are used.
- No carbon deposit or reduction of performance was observed while introducing high carbon loads to the Agilent 4100 MP-AES (without the use of a cooled spray chamber).
- Two important advantages of this instrument are:
 - low running costs, and
 - laboratory safety, as no flammable gases are required.
- Considering cost, performance and multi-element capabilities, the 4100 MP-AES is a suitable and efficient alternative to flame AA for this application, and presents better performance for critical elements such as the one investigated here.

Direct Measurement of Impurities in Gasoline

Same limits as ASTM D6751 and EN14538

- Ca, Mg combined 5 ppm
- Na, K combined 5 ppm

High volatility of the gasoline is a challenge

- Cooled spray chamber -10 °C
- Standard Additions calibration

The Measure of Confidence

• Direct measurement of samples

Instrument Parameters

Parameter	Setting
Nebulizer	Inert OneNeb
Spray chamber	IsoMist cooled spray chamber (-10 °C)
Sample tubing	Orange/green solvent resistant
Waste tubing	Blue/blue solvent resistant
Read Time	3 s
Replicates	3
Stabilization time	30 s
Fast Pump (80 rpm)	On
Background correction	Off-peak
Pump speed	5 rpm

Page 50

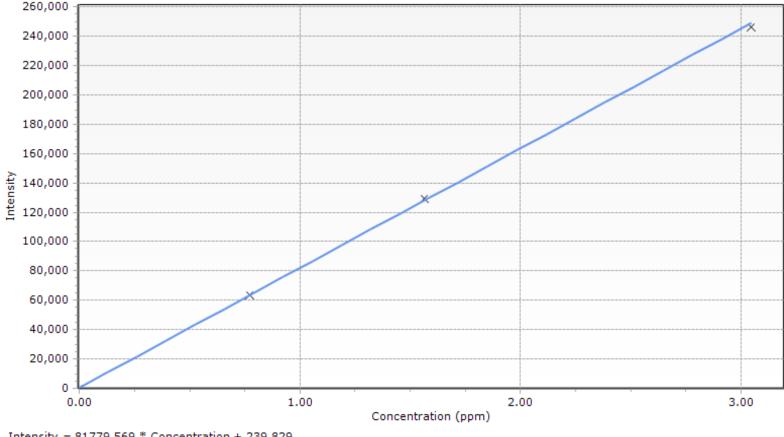
Sample Preparation

• Gasoline fuel standards were prepared by spiking a sample with an oil-based metal calibration standard, S21+K (Conostan), giving final concentrations of 0.89 ppm, 1.92 ppm and 3.94 ppm.

• Standard additions calibration allows the gasoline samples to be directly analyzed, without further sample preparation.

• For the spike recovery test, gasoline samples were spiked with S21+K to give spike concentrations of 1.1 ppm.

Calibrations and Detection Limits


Element	Wavelength (nm)	Correlation Coeff	MDL (ppb)
Mg	285.213	0.99993	2.7
Са	422.673	0.99934	4.3
Na	588.995	0.99939	5.3
К	766.491	0.99975	29.4

The Measure of Confidence

Excellent Standard Additions Linearity - Gasoline

Mg 285.213 nm

Intensity = 81779.569 * Concentration + 239.829 Correlation coefficient: 0.99993

The Measure of Confidence

Spike Recoveries - Gasoline

Gasoline fuel sample spiked with 1.1 ppm S21+K

Element	Sample (ppm)	Spike (ppm)	Recovery %
Mg 285.213 nm	< MDL	1.11	100
Ca 422.673 nm	< MDL	1.06	95
Na 588.995 nm	< MDL	1.11	100
K 766.491 nm	0.05	1.12	96

Page 54

Determination of Wear Metals and Additives in Oil

Instrument Parameters

Parameter	Setting
Nebulizer	Inert OneNeb
Spray chamber	Double-pass glass cyclonic
Sample tubing	Orange/green solvent resistant
Waste tubing	Blue/blue solvent resistant
Read Time	3 s
Replicates	3
Stabilization time	15 s
Rinse time	45 s
Fast Pump (80 rpm)	On
Background correction	Auto
Pump speed	5 rpm

Standard and Sample Preparation

Wear metals and contaminants

• 1:10 dilution with Shellsol

Additives

• 1:100 dilution with Shellsol

Standards

• Prepared from 500 ppm S21 (Conostan)

All matrix matched with blank oil for constant viscosity

Agilent Technologies

Measured Results for SRM 1085b Wear Metals

Element & wavelength (nm)	Measured (mg/kg)	Certified (mg/kg)	Recovery (%)	
Fe 259.940	314.7 ± 0.3	301.2 ± 5.0	104	
Mn 259.372	289.9 ± 0.2	300.7 ± 2.0	96	Great
Cd 226.502	290.9 ± 2.9	302.9 ± 5.1	96	recoveries
Cr 276.653	305.2 ± 0.1	302.9 ± 3.9	101	for all key
Si 251.611	295.7 ± 1.9	300.2 ± 5.0	99	elements
Ni 305.081	291.6 ± 0.1	295.9 ± 7.4	99	
Cu 327.395	300.9 ± 0.1	295.6 ± 8.5	102	
Ag 328.068	308 ± 0.2	304.6 ± 8.9	101	
Pb 283.305	296.1 ± 0.1	297.7 ± 6.8	99	
V 310.229	287.6 ± 0.1	297.8 ± 4.6	97	
Ti 323.452	293.9 ± 0.1	301.1 ± 2.9	98	
Sn 303.411	295.3 ± 0.3	299.4 ± 4.8	99	
Mo 319.398	296.9 ± 0.1	300.6 ± 3.2	99	
AI 396.152	291.7 ± 0.2	300.4 ± 9.3	97	
Na 589.592	297.4 ± 0.1	305.2 ± 7.0	97	

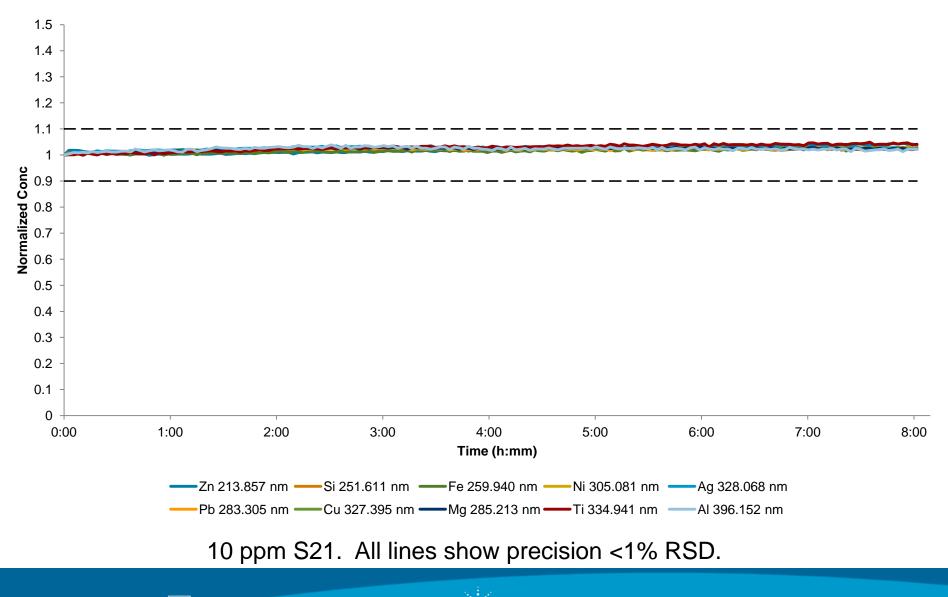
Measured Recoveries on 10 ppm Spike of Gear Oil

Element	Wavelength (nm)	Unspiked gear oil (ppm)	Spiked gear oil (ppm)	Spike re (%)	covery
Ag	328.068 nm	0.27	11.01	105	
AI	396.152 nm	0.32	10.31	98	
Cd	228.802 nm	0.14	9.85	95	G
Cr	276.653 nm	0.25	9.92	<mark>95</mark>	fo
Cu	327.395 nm	2.68	13.14	103	e
Fe	259.940 nm	10.41	20.09	95	
Mn	259.372 nm	0.80	11.54	105	
Mo	319.398 nm	9.02	19.34	101	
Na	589.592 nm	0.46	10.70	100	
Ni	305.081 nm	0.07	10.13	99	
Pb	283.305 nm	0.25	11.36	109	
Si	251.611 nm	2.23	11.60	92	
Sn	303.411 nm	0.16	10.62	103	
Ti	323.452 nm	0.01	10.87	106	
V	310.229 nm	0.15	10.71	104	

The Measure of Confidence

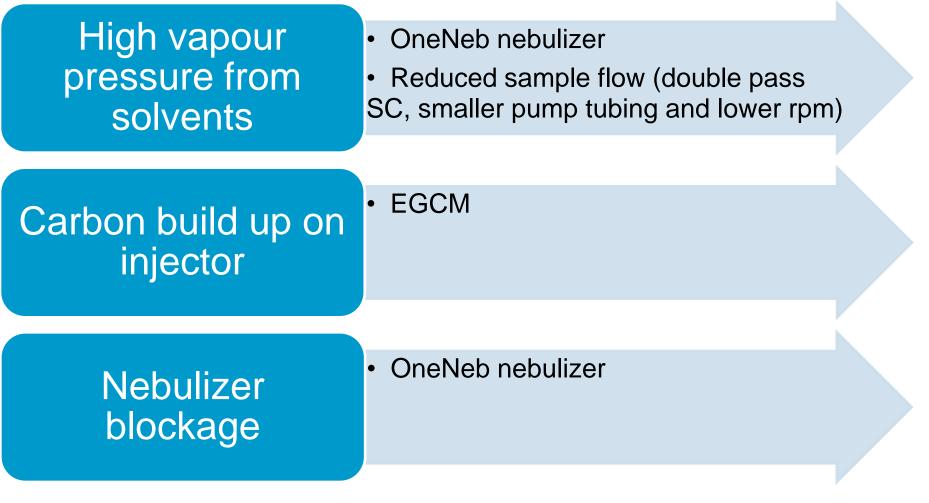
Measured Results for Additive Elements

Measured Results vs Certified Values


Element	Measured (mg/kg)	Certified (mg/kg)	Recovery %	
P 213.618	301.5 ± 0.1	299.9 ± 7.2	101	
Zn 481.053	314.9 ± 0.3	296.8 ± 6.8	106	
Mg 285.213	300.6 ± 0.2	297.3 ± 4.1	101	
Ca 422.673	279.6 ± 0.1	298	94	
Ba 614.171	281.2 ± 0.1	300.1 ± 2.4	94	
Measured Recov				
Element	Mixed Gear (ppm)	Spike (ppm)	Recov	ery %
P 213.618	17.16	26.71	95	

Element	Mixed Gear (ppm)	Spike (ppm)	Recov	ery %
P 213.618	17.16	26.71	95	
Zn 481.053	6.99	17.17	101	
Mg 285.213	1.53	11.32	97	
Ca 422.673	8.89	19.69	107	
Ba 614.171	0.00	9.16	91	

The Measure of Confidence


Organics – Long Term Stability

Page 61

4100 MP-AES Solves the Challenges

Agilent 4100 MP-AES

Runs on air – the most significant advance in atomic spectroscopy

- Lowest running cost of any atomic spectroscopy technique due to capability to run on air – ideal for remote and at site operation
- Improved safety capability to run on air means no flammable gases and no manual handling of cylinders
- Easy-to-use software with MP applets and plug and play torch which simplify operation and maximize uptime
- Superior performance to flame AA, with capability to run unattended overnight

The Measure of Confidence

Thank you! Questions?

The Market Leaders in Atomic Spectroscopy

